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Abstract

   Location systems are key to a rich experience for mobile users. When they roam outdoors, 

mobiles can usually count on a clear GPS signal for an accurate location, but indoors, GPS 

usually fades, and so up until recently, mobiles have had to rely mainly on rather coarse 

grained signal strength readings for location. What has changed this status quo is the recent 

trend of dramatically increasing numbers of antennas at the indoor AP, mainly to bolster 

capacity and coverage with multiple-input, multiple-output (MIMO) techniques. In the near

future,  the  number  of  antennas  at  the  access  point  will increase  several-fold,  to  meet  

increasing demands for wireless capacity with MIMO links, spatial division multiplexing, and 

interference management. We thus observe an opportunity to revisit the important problem

of localization with a fresh perspective. This paper presents the design and experimental  

evaluation of ArrayTrack, an indoor location system that uses MIMO-based techniques to 

track wireless clients in real time as they roam about a building. We prototype ArrayTrack

on a WARP platform, emulating the capabilities of an inexpensive 802.11 wireless access 

point. Our results show that ArrayTrack can pinpoint 40 clients spread out over an indoor  

office environment to within an 30 cm location accuracy.
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Location systems are key to a rich experience for mo-
bile users. When they roam outdoors, mobiles can usu-
ally count on a clear GPS signal for an accurate loca-
tion, but indoors, GPS usually fades, and so up until re-
cently, mobiles have had to rely mainly on rather coarse-
grained signal strength readings for location. What has
changed this status quo is the recent trend of dramati-
cally increasing numbers of antennas at the indoor AP,
mainly to bolster capacity and coverage with multiple-
input, multiple-output (MIMO) techniques. In the near
future, the number of antennas at the access point will
increase several-fold, to meet increasing demands for
wireless capacity with MIMO links, spatial division mul-
tiplexing, and interference management. We thus ob-
serve an opportunity to revisit the important problem
of localization with a fresh perspective. This paper
presents the design and experimental evaluation of Ar-
rayTrack, an indoor location system that uses MIMO-
based techniques to track wireless clients in real time as
they roam about a building. We prototype ArrayTrack
on a WARP platform, emulating the capabilities of an
inexpensive 802.11 wireless access point. Our results
show that ArrayTrack can pinpoint 40 clients spread out
over an indoor office environment to within an 30 cm
location accuracy.

1. INTRODUCTION

The proliferation of mobile computing devices con-
tinues today, with smartphones, tablets, and laptops a
commonplace sight. Outdoors, mobile devices largely
enjoy a robust and relatively accurate location service
from Global Positioning System (GPS) satellite signals,
but indoors where GPS signals don’t reach, two factors
make providing an accurate location service quite chal-
lenging. First, the many objects found indoors near
access points and mobile clients reflect the energy of
the wireless signal in a phenomenon called multipath
propagation. While the differences between the result-
ing path lengths vary over a wide range outdoors (on
the order of 3 µs in urban areas), they vary over a sig-
nificantly smaller range indoors (about 20–50 ns) [17].
This forces an unfortunate tradeoff that most existing
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Figure 1: A pseudospectrum of a client’s received
signal at a multi-antenna access point estimates
the incoming signal’s power as a function of its
angle of arrival.

location-based systems make: either adapt to this hard-
to-predict pattern of multipath fading, or leverage ex-
pensive hardware that can sample the wireless signal at
a very high rate. Most existing systems choose the for-
mer, building maps of multipath signal strength [4, 5,
32, 25], or estimating coarse differences using RF prop-
agation models [9, 11].

The second factor that makes an indoor location ser-
vice challenging is that users’ and applications’ demands
for accuracy are especially acute indoors. While the
few meters of accuracy GPS provides outdoors are more
than sufficient for street- or city block-level navigation,
small differences in location have more meaning to peo-
ple and applications indoors. A few meters of error in an
estimated location can place a person in a different room
within a building, for example. A solution that offers
a centimeter-accurate location service could therefore
allow widely-deployed WiFi access points to offer the
benefits of systems that heretofore required dedicated
infrastructure, such as Active Badge [26], Bat [27], and
Cricket [16].

The key observation we make in this paper is that in
recent years, a new opportunity to improve indoor lo-
cation systems has presented itself: an ever-increasing
number of antennas at the access point, mainly to bol-
ster capacity and coverage with multiple-input, multiple-
output (MIMO) techniques. IEEE 802.11n, in particu-
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lar, exploits MIMO extensively through the use of many
antennas at the access point. We expect that in the fu-
ture, the number of antennas at the access point will
increase several-fold, to meet the demand for MIMO
links and spatial division multiplexing [23, 1].

ArrayTrack is a system that exploits the increasing
number of antennas at commodity access points to pro-
vide fine-grained location for mobile clients in an in-
door setting. To make ArrayTrack feasible in terms
of cost, we use commodity hardware that samples the
wireless signal at 802.11 bandwidth (20 MHz). Two or
more ArrayTrack APs cooperate to use angle-of-arrival
(AoA) of clients’ incoming signals at each to determine
the client’s location. The result, shown in Figure 1, is
a pseudospectrum: a high-resolution estimate of power
arriving at the AP as a function of angle. The spe-
cific challenge that multipath poses is the addition of
side-lobes in the pseudospectrum corresponding to re-
flections at angles other than the client’s true bearing.
To address this problem, we introduce a novel archi-
tecture and multipath disambiguation algorithm that
intelligently switches between two heuristics for analyz-
ing the AoA pseudospectrum. Our architecture relies
on an AP design with two sets of antennas, separated
by approximately two and a half feet.

ArrayTrack advances the known state-of-the-art in
AoA-based localization by combining two novel heuris-
tics with “best of breed” algorithms for AoA-based di-
rection finding and dealing with coherent signals arriv-
ing at the access point (spatial smoothing), as is com-
mon in indoor environments. The first heuristic we
propose, intra-AP triangulation, uses triangulation be-
tween these two sets of antennas to disambiguate the
direct path to the client from multipath reflections and
simultaneously solve for the client’s true bearing and
range. The second heuristic we propose, pseudospec-

trum matching, correlates individual lobes from the two
pseudospectra with one another in an attempt to elim-
inate multipath reflections from each.

A key feature of our approach is that by operat-
ing within the physical layer, we can estimate location
based on overhearing little more than a packet’s pream-
ble. This allows ArrayTrack to determine a client’s lo-
cation to within centimeters in real time, something not
possible with model- or map-based approaches, which
build up information by averaging over relatively long
time windows, resulting in median location errors be-
tween two and four meters [7].

We implement ArrayTrack on the Rice WARP FPGA
platform, and evaluate in a 40-node wireless network de-
ployed over one floor of a busy office space. For all of
the stationary clients we tested, intra-AP triangulation
and pseudospectrum matching can consistently local-
ize to an angular accuracy of 1.3◦, corresponding to an

average linear accuracy of 30 cm for an average 15 m
distance between access point and clients.

2. DESIGN

We now describe ArrayTrack’s design top-down, di-
viding into three different modules.

2.1 Packet detection

To obtain a bearing information for a client, the AP
needs to overhear some transmissions from this client.
The transmission can be in any form of packet: RTS/CTS
or data packet. ArrayTrack only needs a very tiny part
of the packet to process the AoA information. Array-
Track works with any part of the packet and it does
not require decoding the packet. For a wireless trans-
mitted packet, the most robust part is the preamble
as it’s normally transmitted at base rate and further
more, the preamble part contains the known time do-
main sequence for the receiver to detect the existence
of a packet. So ArrayTrack detects the preamble of the
packet and records a small part of it. Principally speak-
ing, one time domain packet sample (a 1000-byte packet
transmitted at 6 Mbps sampled at 40 MHz contains
around 50000 samples) will work for our scheme. How-
ever, the packet recorded will be affected by background
noise and interference from other senders. We therefore
capture multiple samples to obtain mean phase differ-
ence. For a 1000-bytes packet, a small part of the
preamble such as 1 byte is enough for ArrayTrack to
work well. The preamble part of 801.11a/g packets con-
tains known short and long training symbols. We im-
plemented modified version of Schmidl-Cox algorithm
on WARP FPGA to detect the short training symbols.
As there are 10 short training symbols in the preamble,
we apply a moving average filter with window size equal
to 10 short training symbols to enhance the detection of
the packet. Once a packet is detected, multiple samples
of the packet are recorded to process AoA spectrum for
this transmission.

2.2 AoA spectrum generation

In both indoor and outdoor wireless channels, a sender’s
signal reflects off objects in the environment, resulting
in multiple copies of the signal arriving at the access
point; this phenomenon is known as multipath. For
clarity of exposition, we first describe how to compute
angle of arrival when there is just one path from trans-
mitter to access point, then generalize the principles
to handle multipath wireless propagation. The key to
computing angle of arrival of a wireless signal is to ana-
lyze its phase, a quantity that progresses linearly from
zero to 2π every radio wavelength λ along the path from
client to access point, as shown in Figure 2(a).

This means that the access point receives signals with
an added phase determined by the path length d from
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Figure 2: ArrayTrack’s principle of operation:
(a) The phase of the signal goes through a 2π
cycle every radio wavelength λ. (b) The com-
plex representation of the sent (filled dot) and
received (crosses) signals at the antenna in (a).

Figure 3: (c) A signal arriving at bearing θ to
two antennas. (d) The complex representation
of the sent (filled dot) and received (crosses) sig-
nals at both antennas in (c).

the client. Phase is particularly easy to analyze be-
cause software-defined and hardware radios represent
the phase of the wireless signal graphically using an in-

phase-quadrature (I-Q) plot, as shown in Figure 2(b),
where angle measured from the I axis indicates phase.
Using the I-Q plot, we see that the distance d adds a
phase of 2πd/λ as shown by the angle measured from
the I axis to the cross labeled x1 (representing the signal
received at antenna one). While there are two antennas
attached to one AP and located with λ/2 distance in
between, the distances from client to each of the an-
tenna are not equal unless the bearing θ is equal to 0.
As depicted in Figure 3(c), the distance along a path ar-
riving at bearing θ is a fraction of a wavelength greater
to the second antenna than it is to the first, the fraction
depending on θ. Assume the distance d is much larger
than λ/2 and apply simple mathematics, this amount
of extra distance is calculated as:

∆d = λ/2 ∗ sin θ (1)

These facts suggest a particularly simple way to com-
pute θ at a two-antenna access point in the absence of
multipath. First, use a software-defined or hardware
radio to measure x1 and x2 directly, compute the phase
of each (∠x1 and ∠x2), and then solve for θ (∠x1−∠x2

is between −π and π) as:

θ = arcsin

(

∠x2 − ∠x1

π

)

(2)

In real-world multipath environments, however, Equa-
tion 2 breaks down because multiple paths’ signals sum
in the I-Q plot, breaking the simple two-antenna expo-
sition above. However, adding antennas can resolve the
ambiguity. We applied the MUSIC algorithm which
is the well known AoA estimation algorithm for our
estimation. MUSIC algorithm is able to provide un-
biased estimates of the number of signals, the angle of
arrival, and the strengths of the waveforms. We assume
D signals are coming at M antennas and the number
of incoming signals D is smaller than the number of
antennas M . It’s understood that the signals are time
varying and thus our calculations are based upon time
snapshots of the incoming signal. D signals are arriving
from D directions and are received by an array of M
antennas. Assume si(k) is the ith incoming signal at
time k while xj(k) is the received signal at jth antenna
element at time k , then all the D incoming signals are
represented as a vector s(k)

s(k) =









s1(k)
s2(k)
. . .

sD(k)









(3)

while all the received signals at M antennas are repre-
sented by a vector x(k)

x(k) =









x1(k)
x2(k)
. . .

xM (k)









(4)

If a signal is coming at a bearing θi, assume the distance
between the signal source and the nearest antenna is d,
then the distance between the source and the second
antenna d2 is calculated as:

d + 1/2λ cos(θ) (5)

The distance for the Mth antenna dM can easily be
found the same way:

d + (M − 1)/2λ cos(θ) (6)

Recall the phase change and distance prorogation re-
lationship discussed earlier, a(θi) is defined as the M-
element array steering vector for the θi direction of sig-
nal arrival:

a(θi) = a exp(
−j2πd

λ
)













1
exp(−jπλ cos(θi))
exp(−j2πλ cos(θi))

. . .
exp(−j(M − 1)πλ cos(θi))













(7)

For D incoming signals, the steering matrix A is defined
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as:

A = [a(θ1) a(θ2) . . . a(θD)] (8)

By multiplying the incoming signals s(k) with this steer-
ing matrix A and adding the noise, the received signals
at M antennas x(k) is generated in the following form:

x(k) = [a(θ1) a(θ2) . . . a(θD)]









s1(k)
s2(k)
. . .

sD(k)









+ n(k) = A ∗ s(k) + n(k)

(9)

n(k) is the noise vector at the antenna array. It has
zero mean and σ2

n variance.
Now let us define the M × M array correlation matrix
Rxx:

Rxx = E[x ∗ xH ] (10)

= E[(As + n)(sHAH + nH) (11)

= AE[s ∗ sH ]AH + E[n ∗ nH ] (12)

= ARssA
H + Rnn (13)

This correlation matrix can also be expressed as:

Rxx = A × Rss × AH + σ2

nI (14)

where Rss is the source correlation matrix and Rnn is
the noise correlation matrix. Then the eigenvalues and
eigenvectors for Rxx are calculated. The array corre-
lation matrix has M eigenvalues [λ1 λ2 . . . λM ]
along with M eigenvectors E = [e1 e2 . . . eM ]. If the
eigenvalues are sorted from smallest to the largest, the
smallest eigenvalues correspond to the noise while the
bigger ones correspond to the signals. Then the matrix
E can be divided in to two subspaces as: E = [EN ES ].
The first subspace EN is called the noise subspace and
is composed of M − D eigenvectors while the second
subspace ES is called the signal subspace and is com-
posed of D eigenvectors associated with the D arriving
signals. For uncorrelated noise, the smallest eigenval-
ues λ1 =λ2= . . .= λM−D = σ2 correspond to the noise
level. In practice, these multiple small eigenvalues will
occur in a cluster rather than all precisely equal. This
can actually help us to identify the number of incoming
signals by finding the number of clustered small eigen-
values. These eigenvectors with the smallest eigenvalues
are chosen to construct the M × (M − D) dimensional
noise subspace:

EN = [e1 e2 e3 . . . eM−D] (15)

The noise subspace eigenvectors are orthogonal to the
array steering vectors at the angles of arrival θ1, θ2,
..., θD. Because of this orthogonal condition, the Eu-
clidean distance d2 = a(θ)HENEH

N a(θ) = 0 holds for
each arrival angle. We define MUSIC pseudospectrum

Source

Antenna
array 2

Antenna
array 1

Virtual source

wall

d
1

Θ
12Θ

11

Θ
21

Θ
22

d
2

Figure 4: Identify direct path bearing by dis-
tance comparison: d1 < d2 ⇒ θ11 is direct path
bearing.

as:

PMU =
1

a(θ) ∗ EN ∗ EH
N ∗ a(θ)

(16)

This expression a(θ)HENEH
N a(θ) will not be exactly 0

in practice but a very small value. Put this expres-
sion in the denominator will get sharp peaks at the an-
gles of arrival. When the incoming signals are highly
correlated, the traditional MUSIC algorithm does not
work well and a modified version of MUSIC with spa-
tial smoothing technique [20] will be applied. For the
direct path signal and reflection path signal from the
same source, they are highly correlated so we implement
spatial smoothing MUSIC for our AoA estimation.

2.3 Direct and reflection paths differentiation
scheme

MUSIC algorithm helps us obtain the AoA spectrum
for the incoming signals. However, if there are multiple
peaks on the spectrum indicating several simultaneous
incoming signals from different directions including one
direct path and several reflection paths, it’s critical for
us to identify the direct path bearing for localization.
One obvious way to identify the direct path is by mea-
suring which signal arrives first. The channel impulse
response (CIR) scheme can be applied to show the in-
coming signals at different time points. However, CIR
scheme requires a very high sampling frequency to dif-
ferentiate the direct path and reflection path signals.
For 802.11a/g with 20 MHz bandwidth, normally the
incoming signal is sampled at 40 MHz. This frequency
is far too low for CIR scheme to work. So CIR method
works well for UWB but not WiFi signals in indoor en-
vironments. We propose a novel scheme to differentiate
the direct path and reflection paths with two antenna
arrays. In the future with more antennas attached to
one AP, the antennas can easily be divided into two
groups and separated with a small distance. The basic
idea of our scheme is demonstrated in Figure 4. Two an-
tenna arrays are placed close to each other in one line.
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Figure 5: WARPs introduce random but con-
stant phase offsets to each antenna. (a) No phase
offset. (b) Random phase offset θ1 introduced at
antenna 1. (c) Random phase offset θ2 intro-
duced at antenna 2.

The direct path signal arrives at the two arrays with
different bearings. As the two arrays are put close to
each other, these two bearings also have similar values.
We identify two bearings as one pair if they are close
enough by comparing the difference with a threshold.
The same thing happens to the reflection path. The
signal from virtual source indicated in Figure 4 arrives
at the two arrays with another two different but close
bearings. By knowing these two pairs of bearings, we
are able to obtain d1 and d2 indicated in Figure 4 re-
ceptively:

d1 =

∣

∣

∣

∣

1

tan θ11 − tan θ12

∗
1

cos θ11

∣

∣

∣

∣

(17)

d2 =

∣

∣

∣

∣

1

tan θ21 − tan θ22

∗
1

cos θ21

∣

∣

∣

∣

(18)

As we know, the direct path distance is always the
shortest. d1 and d2 are compared to identify the di-
rect path bearing. If there are more than two pairs, the
minimum distance pair is chosen. In real indoor envi-
ronment shown later in the evaluation part, we show
that it’s even simpler for most of the cases because the
direct path bearing will change slightly while the re-
flection path bearings change significantly. So a lot of
time, we can only find the direct path bearing pair and
it can be easily chosen without calculation of distance
and comparison.

3. IMPLEMENTATION CHALLENGES

For the hardware implementation, some challenges
exit before our system fully function. We describe them
below:

3.1 Antenna phase calibration

Equipping the access point with multiple antennas is
necessary for ArrayTrack, but does not suffice to cal-
culate angle of arrival as described in the preceding
section. As we see in the right-hand section of Fig-
ure 6 labeled “WARP,” each radio receiver incorporates
a 2.4 GHz oscillator whose purpose is to convert the in-
coming radio frequency signal to its representation in
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0(∃−1.211−∃3∃/2∗2+42/∃

0(∃−1.211−∃5∃/2∗2+42/∃
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>;9:∃

6
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Figure 6: ArrayTrack physical layer design.
All 2.4 GHz oscillators are synchronized, and
inputs to the eight receivers switch between
the antennas and the signal generator (labeled
“USRP2”); we use the latter for calibration.

I-Q space shown, for example, above in Figure 5. An
undesirable consequence of this downconversion step is
that it introduces an unknown phase offset to the result-
ing signal in I-Q space, rendering our proposed method
of measuring angle of arrival (and MIMO) inoperable.
To remedy this, MIMO systems phase lock each radio’s
oscillator together, so that they run at exactly the same
frequency. We represent this by the dotted line between
oscillators in Figure 6. This suffices for MIMO, but not
for our application, because the downconverters of even
phase-locked systems introduce an unknown but con-
stant phase difference to each receiver, which manifests
as an unknown phase added to the constellation points
in Figure 5. Our solution is to calibrate the array, mea-
suring each phase offset directly. The USRP2 in Fig-
ure 6 transmits a continuous 2.4 GHz carrier through
a 36 dB attenuator, which we split into eight signals
and feed into the radio front ends. Since each of the
eight paths from the USRP2 to a radio receiver is of
equal length, the signals we measure when the switches
in Figure 6 are each in the lower position yield seven rel-
ative phase offsets for antennas 2–8, relative to antenna
one. Subtracting these relative phase offsets from the
incoming signals over the air then cancels the unknown
phase difference, and our scheme become applicable.

3.2 WARP antenna fine time synchronization

As ArrayTrack relies on the phase difference between
antennas to obtain AoA information, ArrayTrack fails
to achieve correct bearing information if the data sam-
ples recorded at each antenna are not fully time syn-
chronized. The signals arrive at each antenna are not
the same as each antenna is located at a different posi-
tions which experience different multipaths and shad-
owing. Thus if we apply Schmidl-Cox algorithm on
each antenna and trigger the “start capturing” when
packets are detected, the radios connected to the dif-
ferent antennas may start recording packets at differ-
ent time points. This problem is solved by selecting
one master ratio board and only implementing Schmidl-
Cox algorithm on this board. The rest radios share the
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the decision made by the chosen representative radio
board. Sharing this decision between the 4 radios on the
same WARP board can be accomplished by modifying
the hardware system generator model design. However,
sharing this decision between two WARPs is more chal-
lenging. We utilize the digital I/O pins on the WARP
board to output this one bit boolean signal to the other
WARP board. The hardware design is modified and
two I/O pins are connected with copper wire (100-mil
header) to share this decision information.

3.3 Real-time system

The current WARPLab reference design utilizes a
custom version of xilnet, a very simple IP stack from
Xilinx which the throughput performance is not op-
timized. The link is 100M Ethernet but the actual
throughput is much smaller. The original design records
everything in a time window no matter there is packet
transmission or nothing but noise. So the transfer of the
recorded content from WARP to PC in real time is not
possible as the recording speed is much faster than the
transferring speed. So the current WARPLab design
fills the buffer first before transferring buffer content to
the PC which introduce an additional 0.4 ms latency de-
lay. What make this situation worse: the buffer size of
WARP is very small that WARP is only able to buffer
16383 samples at 40 MHz sampling rate which corre-
sponds to 0.4 ms. This time period is too short and
can only accommodate one small size packet. We im-
plement the Schimdl-Cox algorithm on FPGA to detect
the packet and only start recording when there is net-
work traffic going on. This partially solves the problem
as we ignore those samples with no meaningful content
but noise. Further, we buffer only a small part of the
preamble for each packet which reduce the amount of
samples needed to be transferred to PC significantly.
With these two schemes applied, the time latency is sig-
nificantly reduced and we are able to buffer and trans-
mit nearly at the same time to achieve a real-time AoA
tracking system.

4. EVALUATION

In this section, testbed results are presented to show
how ArrayTrack performs in real indoor environment.
First we present how accurately ArrayTrack can obtain
the direct path bearing of the clients and identify in
what circumstances ArrayTrack may fail. We then ex-
plore the robustness of ArrayTrack against collision and
low SNR. Then we show the latency introduced by Ar-
rayTrack which is a critical factor for a fast response
real-time functional system. Finally we present the ef-
fect of number of antennas for ArrayTrack and also the
spatial smoothing effect on coherent signals in real in-
door environment.

Figure 7: The ArrayTrack prototype. Two
Rice WARP platforms (left) provide a total of
eight antennas and radio chains, while a cable-
connected USRP2 software-defined radio (right)
calibrates the array.

Figure 8: The ArrayTrack prototype with linear
antenna arrangement.

Our prototype AP as shown in Figure 7 uses two Rice
WARP FPGA-based wireless platforms. Each WARP
platform is equipped with four radio front ends and four
omindirectional antennas. The WARPs run a custom
hardware design of WARPLab. All the eight antennas
are calibrated with respect to one of them as described
earlier. The clients are not equipped with multiple an-
tennas. An ordinary laptop with WiFi interface serves
perfectly as a client working with our ArrayTrack im-
plemented AP. We use the Soekris boxes as our clients
as they are small and can be powered with Ethernet
cable which are flexible to be put at any location with-
out the constraint of power plug. Each Soekris box has
two antennas and only one antenna transmits while the
other is disabled.

The 8 antennas attached to WARP are placed in lin-
ear (Figure 8) or circular (Figure 7) arrangements. The
AoA range for the linear arrangement is between -90
and 90 degrees, since clients on the two sides of the
line formed by the antennas are not differentiable. In
the linear arrangement, antennas are spaced at a half
wavelength distance (6.13 cm). The circular arrange-
ment is actually an octagon with 4.7 cm sides and an
antenna at each corner. We place the prototype access
point at the point marked “AP” in our testbed floor-
plan, shown in Figure 9. The layout shows the basic
structure of the office but does not include the cubic
layout. It’s a typical indoor office environment com-
monly seen. We randomly place the 40 soekris clients
to cover all the different kinds of scenarios: some of
the clients are put far away from the AP and some are
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Figure 9: Testbed environment: Soekris clients
are numbered, and the WARP access point is
labeled “AP.”

placed in other offices with walls between the clients and
the AP. We also intentionally put some clients behind
the pillar so the direct path between the AP and client
is blocked and make the situation more challenging for
ArrayTrack. We test ArrayTrack with all possible sce-
narios to obtain comprehensive results.

4.1 Indoor localization: bearing accuracy

In order to provide accurate localization service in
indoor environment, the AoA bearing obtained should
be as accurate as possible. We examine pseudospectra
from the 40 Soekris clients shown in Figure 9. In an in-
door environment with strong multipath propagation,
reflections may generate false positive direct path AoA
results. It is critical for us to eliminate these false pos-
itive AoAs if we are to determine the true bearing of
clients. Without any differentiation scheme, we com-
pute the bearing of each client as the angle correspond-
ing to the maximum point on its pseudospectrum. We
compute 30 pseudospectra for each client, each from a
different packet recorded at different time, and plot the
mean obtained bearing as well as 99% confidence inter-
val in Figure 10.

The x axis represents the true bearing we measure
from the map. The y axis is the bearing we obtain
from ArrayTrack without the proposed differentiation
scheme applied. If the mean value is close to the blue
line, it means the bearing obtained is accurate and close
to the true bearing. From the figure, it can be seen that
we are able to obtain accurate bearing results for most
clients regardless of proximity to the AP or location in-
side or outside the AP’s room. For some of them, we get
false positive results which means the maximum point
corresponds to the reflection path bearing and not the
direct path bearing. However, we find this kind of sce-
narios do not happen often. When clients are located
in other rooms, both the direct path and reflection path
are attenuated by the walls. So most of the time, the
direct path is still detected stronger. The stronger re-
flection path normally happens when the clients and AP
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Figure 10: Measured versus ground truth bear-
ing estimation for clients in the office environ-
ment (error bars indicate 99% confidence inter-
vals) without path differentiation scheme.

are in the same room and LOS is blocked by obstacles.
So the challenging part is to differentiate the direct path
and reflection paths for these scenarios.

By applying our differentiation scheme proposed, the
results are presented in Figure 11: only one client’s
bearing is not detected correctly; the bearings of all
other 39 clients are estimated very accurately with a
mean error of 1.3 degree. The 99% confidence show the
stableness of our scheme with time. This shows the ef-
fectiveness of our differentiation scheme in identifying
the direct path bearing.

Now let’s zoom into those clients detected wrongly
without differentiation scheme and detected correctly
with our proposed scheme. For all the 7 clients, they
fall into two groups:
Group 1: One reflection path is stronger in at least one
group of array and sometimes in both. However, with
two groups of arrays, the reflection path bearing are
very different while the direct path bearings are more
less stable although they may not be the maximum peak
in the spectrum. This is shown by one real measurement
example from the tested in Figure 12. 5 clients fall into
this category.

Group 2: the reflection path and direct path bearings
in two arrays form several pairs as described earlier in
the design session. We need to calculate the distance
and choose the minimum one which corresponds to the
direct path bearing. There are two clients belong to
this category. One typical example is shown in Figure
13.

There is one client (client 39 in Figure 9) which our
scheme fails. There are two pillars in-between client
39 and the AP. ArrayTrack is able to differentiate the
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Figure 11: Measured versus ground truth bear-
ing estimation for Soekris clients in the office
environment with path differentiation scheme.
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Figure 12: The direct path bearing is stable
and the reflection bearings change significantly
at two arrays.
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Figure 13: Multiple bearing pairs exist and the
bearing corresponds to the minimum distance is
chosen.
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Figure 14: The AoA spectra for 3 clients in a
line with AP.

direct path and reflection path efficiently. However, in
some extreme case when the direct path is blocked by
metal or in our scenario here, blocked by two big pillars,
ArrayTrack may fail. To fully understand this, let’s see
the effect of obstacles blocking the AP and client on our
AoA spectrum as shown in Figure 14:

In Figure 14, we choose three positions in a line rel-
ative to the AP. The first position is chosen to have no
obstacle in-between with the AP. The second position
is blocked by one pillar and the third position is behind
two pillars. We can clearly see the decreasing of direct
path bearing peak in the spectrum graph. However, it
should be noted that not all the positions behind the
pillar will have reflection path stronger than direct path.

As the client which ArrayTrack fails to detect the di-
rect path bearing is blocked by two pillars, we choose
8 other positions near the failed client which are also
blocked by two pillars to test whether ArrayTrack may
also fail in these positions. We choose 4 positions hori-
zontally with 20 cm distance in-between and 4 positions
vertically. Among these 8 selected positions, Array-
Track only fails with one position and still succeed with
all the rest 7 as the direct path is not totally blocked in
these positions. So ArrayTrack more or less works all
the time in indoor environment even with strong mul-
tipaths except in some very extremely scenarios when
the direct path is totally blocked and this is rare in real
indoor environment.

4.2 Robustness

Robustness is one important characteristics Array-
Track wants to achieve. As ArrayTrack works with the
preamble part of a packet, ArrayTrack will be robust
against low SNR. Preamble part is transmitted at the
base rate and what’s more, complex conjugate with the
know training symbol generate peaks which is very easy
to be detected even at low SNR. When there are two
simultaneous transmissions which causes collision, Ar-
rayTrack still works well as long as the first several short
training symbols of the two packets are not collided.
For two packets with A and B bytes receptively, if colli-
sion happens, the percentage of these training symbols
(assume we utilize all the 10 short training symbols (6
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Figure 15: The procedure to obtain AoA spectra
for two colliding packets.
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Figure 16: ArrayTrack is able to obtain AoA for
two colliding packets.

bytes) to detect the packet) part get collided is calcu-
lated as below:

12

A + B
(19)

If both packets are 1000 bytes. The chance of a col-
liding which will affect ArrayTrack will be 0.6% which is
pretty small. If we only utilize one short training sym-
bol to detect the packet, this percentage will further
decrease. We show that as long as the training symbols
are not colliding, we are able to obtain AoA informa-
tion for both of them iteratively as shown in Figure 15.
The first colliding packet is detected and AoA spectrum
is generated. Then the second packet is detected and
AoA spectrum is generated. However, the second AoA
spectrum is composed of bearing information for both
packets as it can be considered as more signals coming
from different directions at the same time. Then we
remove the AoA peak of the first packet from the sec-
ond AoA spectrum and we successfully obtain the AoA
information for the second packet.

In order for this collision to happen , we intentionally
turned off CSMA on Sokeris so two clients can trans-
mit simultaneously. By applying the scheme described
above, we are able to obtain AoA information for both
the packets as shown in Figure 16.

Time line

detection T
d

transfer T
t matlab processingT

p

latencyT
l

transmission time T

Figure 17: The latency ArrayTrack system in-
troduces.

4.3 System latency

The latency of TrrayTrack is an important character-
istic we pay attention to as it’s critical for ArrayTrack
to work in real time. As ArrayTrack only requires a
small part of packet to process AoA information, we
are given the opportunity to start transferring and pro-
cessing the AoA information while the packet is still
under transmission. The time-line is shown as Figure
17. ArrayTrack has three parts of latency components:

T : transmission time of a packet.
Td: the short training symbol detection time. For 10

short training symbols. This time is 0.8 * 10 = 8 us
Tt: the transfer of the recorded samples from WARP

boards to PC through the Ethernet cable. This time
is decided by the number of samples transferred from
WARP boards to PC and the transmission speed of
the Ethernet connection. Assume N samples are to be
transmitted and the Ethernet speed is S Mbps. Each
sample is 4 bytes and we have 8 radio boards to transfer
one by one. So the time needed for the transmission is
calculated as: Tt=N * 32 * 8/(1000 * S) ms

The Ethernet connection between WARP and PC is
100 Mbps. However, due to the very simple IP stack
currently implemented on WARP, the maximum through-
put can be achieve is much smaller and measured to
be around 1 Mbps. To show that ArrayTrack works
well with very small number of samples, we present
one typical testbed results in Figure 18. Each subplot
is composed of AoA spectra from 30 different packets
recorded at different time from the same client. We can
see clearly that when the number of samples increased
to 5, the AoA spectrum is already quite stable which
demonstrate ArrayTrack has the potential to responds
extremely fast.

Assume we use 5 (N=5) samples for each process.
Tt = 5 * 32 * 8 /1000 =1.28 ms
Tp: the precessing of recorded samples with Matlab.
Tp depends how the MUSIC algorithm is implemented

and the computer capability. For our current implemen-
tation with an Intel Xeon 2.80 GHz CPU and 6 G RAM,
the processing time is around 5 ms.
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Figure 18: The effect of number of data samples
on AoA spectrum.
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Figure 19: More antennas improve resolution
and accuracy. Resolution and accuracy benefit
localization.

For a 1000-byte packets transmitted at 6 Mbps, the
transmission time is around 1000 * 8 /6 = 1.33 ms. We
note that the total latency for Array Track is around 5
ms:

Tl = Td + Tt + Tp − T = 5ms (20)

This is a quite small latency and it can be further
decreased if we improve the Ethernet connection speed
between WARP and PC and process with a more pow-
erful PC.

4.4 Effect of number of antennas

We show the effect of number of antennas on the
AoA signatures in this section. In order to obtain ac-
curate bearing information in indoor environment with
strong multipath, enough number of antennas is neces-
sary. When there are no multipath reflections and the
direct path signal is relatively strong, even two and four
antennas can generate quite accurate results. However,
in a more challenging environment when the direct path
is relatively weak and multipath reflections are strong,
increasing the number of antennas will result in more

accurate bearing estimation. Another benefit of having
more antennas is that the resolution of the pseudospec-
trum improves as the resolution can be achieved for N
antennas is 180/N degrees which means if there are two
signals coming within 180/N degrees range, these two
signals can not be differentiated with N antennas. In
Figure 19, we show the AoA pseudospectra plot for the
same packet with two, four, six and eight antennas. We
plot them in Cartesian coordinates as it’s more clearly
viewed than polar plot. A two-antenna arrangement
generates one peak. Four antennas yield better res-
olution than two antennas with the measured bearing
closer to the true bearing. However, with four antennas,
it is not possible to differentiate two incoming signals
within a 45 degree range. The direct path and reflected
path are around 30 degrees apart from each other, so
they can not be differentiated with four antennas. In-
stead, one peak at an angle between the two incoming
signals is generated. However, this bearing is usually
close to the true bearing. Once six antennas are ap-
plied, we find that both the direct path and multipath
components are visible. With eight antennas, we have
even better resolution and more accurate results. With
future wireless access point designs (such as SAM [23]
and MUBF [2] ) scaling up the number of antennas at
the access point, the trend favors our design.

4.5 Spatial smoothing

Traditional MUSIC algorithm is known to work poorly
with highly correlated signals which the estimation ac-
curacy is greatly degraded when the signals are coher-
ent. As the direct path and reflection path signals in
indoor environment are highly correlated, we imple-
ment MUSIC algorithm with spatial smoothing (SSP)
and show the effect of spatial smoothing on real indoor
multipath signals. As presented in Figure 20, we show
the AoA spectra generated without SSP, with 2 groups
of sub-array, 3 groups and 4 groups spatial smooth-
ing. With more groups of sub-array applied, the ef-
fective number of antennas are decreased. 2 groups
of sub-array have 7 effective antennas while 3 groups
has 6 effective antennas. It can be shown that spatial
smoothing can sharpen the peak for more accurate re-
sults. However, with more groups of sub-arrays, spatial
smoothing has the negative effect of eliminating smaller
peaks which is sometimes the direct path bearing peak.
A good compromise is choosing 2 groups of sub-arrays
which employs the advantage of spatial smoothing and
not eliminating those small peaks.

5. RELATED WORK

ArrayTrack owes its research vision to early indoor
location service systems that propose dedicated infras-
tructure to provide a fine-grained indoor location ser-
vice. Active Badge [26] equips mobiles with infrared
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Figure 20: Spatial smoothing effects on AoA
spectrum.

transmitters and buildings with many infrared receivers;
active badges emit unique codes, which are then de-
tected by the infrared sensor and associated with loca-
tion with a six meter range. The Bat System [27] uses
a matrix of RF-ultrasound receivers, each hard-coded
with location, deployed on the ceiling indoors. Users
wear “Bats” that transmit unique identifiers to the re-
ceivers over RF while sending simultaneous ultrasonic
“chirps”. Cricket [16] equips buildings with combined
RF-ultrasound beacons which transmit data with simul-
taneous ultrasound chirps, while mobiles carry RF and
ultrasound receivers. Both Bat and Cricket measure
time differences between the RF and ultrasound arrival,
triangulating location by combining multiple measure-
ments to or from different beacons.

The most widely used physical layer information is re-
ceived signal strength (RSS), usually measured in units
of whole decibels. While readily available from com-
modity WiFi hardware at this granularity, the result-
ing RSS measurements are very coarse compared to
physical-layer information, and so incur an amount of
quantization error, especially when few readings are
present.

Map-building approaches.
There are two main lines of work using RSS; the first,

pioneered by RADAR [4, 5] builds “maps” of signal
strength to one or more access points, achieving an ac-
curacy on the order of meters [18, 22]. Later systems
such as Horus [32] use probabilistic techniques to im-
prove localization accuracy to an average of 0.6 me-
ters when an average of six access points are within
range of every location in the wireless LAN converge
area, but require large amounts of calibration. While
some work has attempted to reduce the calibration over-
head [10], mapping generally requires significant cal-
ibration effort. Other map-based work has proposed
using overheard GSM signals from nearby towers [25],
or dense deployments of desktop clients [3]. In contrast

to map-based techniques, the experimental results we
show here achieve their accuracy with just one to two
access points, and require no calibration beforehand.

Model-based approaches.
The second line of work using RSS are techniques

based on mathematical models. Some of these propos-
als use RF propagation models [17] to predict distance
away from an access point based on signal strength
readings. By triangulating and extrapolating using sig-
nal strength models, TIX [9] achieves an accuracy of
5.4 meters indoors. Lim et al. [11] use a singular value
decomposition method combined with RF propagation
models to create a signal strength map (overlapping
with map-based approaches). They achieve a localiza-
tion error of about three meters indoors. EZ [7] is a
system that uses sporadic GPS fixes on mobiles to boot-
strap the localization of many clients indoors. EZ solves
these constraints using a genetic algorithm, resulting
in a median localization error of two meters indoors,
without the need for any explicit pre-deployment cali-
bration.

Other model-based proposals augment RF propaga-
tion models with Bayesian probabilistic models to cap-
ture the relationships between different nodes in the
network [12], and develop conditions for a set of nodes
to be localizable [31]. Still other model-based proposals
are targeted towards ad hoc mesh networks [6, 19, 15].

Prior work in AoA.
Wong et al. [28] investigate the use of AoA and

channel impulse response measurements for localiza-
tion. While they have demonstrated positive results
at a very high SNR (60 dB), typical wireless LANs op-
erate at significantly lower SNRs, and the authors stop
short of describing a complete system design of how the
ideas would integrate with a functioning wireless LAN
as ArrayTrack does. Niculescu et al. [13] simulate AoA-
based localization in an ad hoc mesh network. AoA has
also been proposed in CDMA mobile cellular systems
[30], in particular as a hybrid approach between TDoA
and AoA [8, 29], and also in concert with interference
cancellation and ToA [24].

Geo-fencing [21] utilizes directional antennas and a
frame coding approach to control the indoor coverage
boundary. Each AP sends out partial frames and only
the clients located in the overlapping region covered by
multiple APs can decode all the packets. Compared
to Geo-fencing, ArrayTrack provides a location service
and does not impact the arrangement of traffic in the
wireless network.

Zhang et al. [14] propose a system that uses the chan-
nel impulse response and channel estimates of probe
tones to detect when a device has moved.
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6. CONCLUSION

We have presented ArrayTrack, an indoor location
system that uses angle-of-arrival techniques to locate
wireless clients indoors in a wireless local area net-
work. ArrayTrack combines best of breed algorithms for
AoA based direction estimation and spatial smoothing
with novel algorithms for suppressing non-line of sight
reflections that occur frequently indoors. ArrayTrack
achieves 30 cm location accuracy when clients are sta-
tionary and 60 cm accuracy when moving at a walking
speed, using just one access point equipped with eight
antennas.
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